G∞-structure on Deformation Complex of a Morphism

نویسنده

  • DENNIS V. BORISOV
چکیده

G∞-structure is shown to exist on the deformation complex of a morphism of associative algebras. The main step of the construction is extension of a B∞-algebra by an associative algebra. Actions of B∞-algebras on associative and B∞-algebras are analyzed, extensions of B∞-algebras by associative and B∞-algebras, that they act upon, are constructed. The resulting G∞-algebra on the deformation complex of a morphism is shown to be quasiisomorphic to the G∞-algebra on deformation complex of the corresponding diagram algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metamorphic evolution of high-pressure Quartz Schists in the Chadegan metamorphic complex, Sanandaj-Sirjan zone, Iran

The Chadegan metamorphic complex is a WNW-ESE- trending antiformal structure located in Sanandaj-Sirjan structural zone, Iran.The inner core of the structure is made of orthogneiss, containing eclogitic lenses. Schists and marbles lie structurally above theorthogneiss and crop out in the external limbs of the antiformal dome. Two main deformational episodes have been documented in theschists an...

متن کامل

The logarithmic cotangent complex

We define the cotangent complex of a morphism of fine log schemes, prove that it is functorial, and construct under certain restrictions a transitivity triangle. We also discuss its relationship with deformation theory.

متن کامل

Higgs Bundles and Representation Spaces Associated to Morphisms

Let G be a connected reductive affine algebraic group defined over the complex numbers, and K ⊂ G be a maximal compact subgroup. Let X, Y be irreducible smooth complex projective varieties and f : X → Y an algebraic morphism, such that π1(Y ) is virtually nilpotent and the homomorphism f∗ : π1(X)→ π1(Y ) is surjective. Define R ( π1(X), G ) = {ρ ∈ Hom ( π1(X), G ) | A ◦ ρ factors through f∗} , ...

متن کامل

The Rigid Analytic Period Mapping, Lubin-tate Space, and Stable Homotopy Theory

The geometry of the Lubin-Tate space of deformations of a formal group is studied via an étale, rigid analytic map from the deformation space to projective space. This leads to a simple description of the equivariant canonical bundle of the deformation space which, in turn, yields a formula for the dualizing complex in stable homotopy theory. Introduction Ever since Quillen [22, 1 ] discovered ...

متن کامل

∞ - Algebras , Cartan Homotopies and Period Maps

We prove that, for every compact Kähler manifold, the period map of its Kuranishi family is induced by a natural L∞-morphism. This implies, by standard facts about L∞-algebras, that the period map is a “morphism of deformation theories” and then commutes with all deformation theoretic constructions (e.g. obstructions).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005